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Abstract

We investigate seismic wave velocity reduction resulting from the presence of partial melt in the
upper mantle. The amount of shear and bulk modulus reduction produced by the presence of a
connected network of realistically shaped and naturally organized melt inclusions is found using
finite element calculations. The geometries of the inclusions are taken directly from laboratory
experiments of mantle melting, with finite element meshes constructed to conform to these
shapes. The shear and bulk moduli of the composite material are found for both the unrelaxed
(isolated inclusions) and relaxed (pressure equalized inclusions) cases by assigning appropriate
material properties to the fluid. Modulus reduction from deformation simulations of a solid
containing realistically shaped and ellipse-shaped melt inclusions quantify the effect of melt
pocket cuspateness and melt pocket organization on seismic velocity reduction. The
three-dimensional response is estimated from two-dimensional distributions of the melt phase by
determining the mode IT and mode III components of elastic modulus reduction separately and
summing their effects. In general, cuspate and naturally organized melt inclusions cause greater
velocity reduction. It is shown that Vp and Vg reduction per percent partial melt are at least
3.6% and 7.9%, respectively. Even higher values for velocity reduction are possible above 1%
melt fraction if melt exists only in tubules below 1% melt fraction. The lower, more conservative
values of velocity reduction are ~70% greater for Vp and 84% greater for Vs than the
analytically determined values for ellipsoidal inclusions. Somewhat greater effects are possible if
nonrandom organization of melt occurs on scales greater than our model.



1. Introduction

Measurements of seismic velocity and attenuation
are frequently employed to infer the degree and spa-
tial extent of partial melt in the Earth’s upper man-
tle [e.g., Zhao et al., 1992; Humphreys and Dueker,
1994; Sobolev et al., 1996; Xu and Wiens, 1997; Dunn
and Toomey, 1997; Toomey et al., 1998]. While to-
mographic imaging affords the highest resolution of
any geophysical technique that images volumes of the
deep interior of the Earth [Forsyth, 1992], the rela-
tionship between the physical state of the mantle and
the magnitude of seismic velocity anomalies remains
imprecise. Recent studies illustrate just how uncon-
strained the partial melt content of the upper mantle
is (e.g., Sobolev et al. [1996], who find that for in-
ferred P wave velocity variations of 3%, the partial
melt content can be anywhere between 0 and 3%).
Improved understanding of the relationship between
mantle physical state and seismic observations has re-
mained problematic because of the contributing ef-
fects of various material qualities (e.g., temperature,
composition) and to the complexity of the response
of realistic partially molten material subject to sim-
ple stresses.

The crux of the problem in understanding the ef-
fects of partial melt lies in understanding how the mi-
crostructural geometry of the pore and conduit shapes
containing the melt influences rock elastic proper-
ties. Work to date has been focused in two direc-
tions: (1) laboratory experimental determination of
material properties [e.g., Sato et al., 1988; Hirth and
Kobhlstedt, 1995a, b] and (2) analytic determination of
the mechanical response using simplified geometries
such as cracks [O’Connell and Budianski, 1974], circu-
lar and three-grain junction prismatic tubes [Mavko,
1980], spheres [Einstein, 1906], and ellipsoids [FEs-
helby, 1957; Wu, 1966; Schmeling, 1985; Mainprice,
1997]. Great progress has been made in laboratory
determination of the mechanical response to mantle
rocks both above [e.g., Hirth and Kohlstedt, 1995a, b]
and below [Jackson et al., 1992] the solidus. These
experiments, however, have not achieved the tem-
perature and pressure conditions that produce par-
tial melting while also deforming the sample on time-
scales that simulate observed seismic waves.

Analytic results thus far have two limitations.
First, the shapes of melt inclusions have been ide-
alized as cracks, spheres, ellipsoids, or simplified cus-
pate forms which only roughly approximate the true
geometries of melt in the upper mantle [e.g., Waff and
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Bulau, 1979; Cooper and Kohlstedt, 1982; Kohlstedt,
1992; Waff and Faul, 1992; Foul et al., 1994; Hirth
and Kohlstedt, 1995a]. While it has been argued that
the actual shapes can, in terms of summary statistics
(such as aspect ratio and form factor), be adequately
represented by ellipsoids [Schmeling, 1985; Faul et al.,
1994], the mechanical response of these shapes sys-
tematically differs from simpler geometries with the
same aspect ratio. A fluid-filled, convex circular cylin-
der, for example, is naturally more rigid than a cus-
pate, concave cylinder with the same melt fraction
and aspect ratio [Mavko, 1980]. This leads to an un-
derestimation of the amount of velocity reduction for
a given partial melt fraction when using relationships
based on ellipsoidal geometry. Second, determination
of the frequency dependence of the material’s elastic
modulus and attenuation has been complicated by the
need to isolate specific relaxation times (frequencies)
associated with the transition between discrete states
of stress [O’Connell and Budianski, 1977].

Our strategy for determination of the viscoelastic
material properties of partially molten peridotite has
three parts. It is based on the principle that the dis-
persion due to anelasticity can be derived from the
stress response of the viscoelastic material to a step
function in strain. We calculate (1) the elastic re-
sponse for the “unrelaxed” case in which fluid flow
between pores has not yet diminished the differen-
tial pore pressure excited by the imposed strain; (2)
the elastic response for the “relaxed” case in which
pore pressure equilibrium has been attained by fluid
flow between pores; and (3) the relaxation time spec-
trum by estimating the time-scales of interpore flow
and pressure equilibrium. Development of the anelas-
tic process and the frequency dependent relaxation,
i.e., step 3, is discussed in the companion paper by
Hammond and Humphreys [this issue], who determine
that relaxation occurs sufficiently quickly so that it
is the relaxed modulus excited by observed seismic
waves. The first two steps use finite element models
designed to represent realistic crystal-melt configura-
tions, as inferred from laboratory experiments of par-
tially molten peridotite, as in Figure 1 [Faul et al.,
1994].

The advantage of using finite element calculations
in the first two steps is that any simple or complex
pore shape can be represented with equal ease and
elastic interactions between distinct bodies are ac-
counted for. A disadvantage is that certain important
intuitions are lost when not treating the problem ana-
lytically, so further analysis is required for a detailed

Figure 1



Figure 1: Hammond and Humphreys, Jan. 2000



N

understanding of the underlying processes. In the-
ory, viscoelastic finite elements can be used to eval-
uate the details of frequency dependence in seismic
velocity and attenuation. This is, however, computa-
tionally expensive since lower-frequency interactions
require unreasonably long run times. A lower bound
on the frequencies that can be investigated practically
is thus imposed. These two problems are addressed
by using an alternative approach, the network repre-
sentation of Hammond and Humphreys [this issue].

Creation of a fully three-dimensional elastic finite
element model of realistically shaped and organized
melt inclusions is difficult for the following reasons:
(1) laboratory mantle melting experimental products
from which we derive inclusion shape data are pol-
ished flat to expose a single two-dimensional cross sec-
tion from which we must infer the three-dimensional
shape of the melt phase and (2) the crystals that sur-
round the melt are too complex to be meshed by our
finite element meshing algorithms. Because of these
difficulties we use two finite element analyses that
use simpler geometries to approximate the full three-
dimensional elastic response to inclusion cuspateness.
The first calculation determines the effect of cuspate-
ness and organization on the mode II component of
modulus reduction (see Figure 2). The second deter-
mines the effect of mode IIT modulus reduction owing
to inclusion cuspateness and organization. The total
shear modulus reduction is the sum of the mode IT and
mode IIT effects. From the resulting reduced elastic
moduli we calculate the amount of Vp and Vg velocity
reduction per percent partial melt and compare it to
the velocity reduction calculated from ellipse-shaped
melt inclusions with the same melt fraction and as-
pect ratio. The ratio between these two is a seismic
velocity “correction factor.”

The corrected velocities provide new values for the
partial derivatives of seismic velocity with respect to
melt fraction. These values can be applied in the in-
terpretation of seismic tomography in the same man-
ner as the derivatives of seismic velocity with respect
to temperature, density, and composition.

2. Elastic Effects: Finite
Element Calculations

Realistic melt geometries have been determined in
laboratory experiments [e.g., Waff and Bulau, 1979;
Waff and Faul, 1992; Faul et al., 1994; Hirth and
Kohlstedt, 1995a] that simulate mantle conditions to
depths of ~70 km. We use images of the melt phase

3

from Faul et al. [1994] (Figure 1) to create finite
element representations of the composite material.
Details of the experimental configuration and imag-
ing procedures are given by Faul et al. [1994] and
Waff and Bulow [1982]. The melt distribution re-
sulting from these experiments is determined by slic-
ing the run product and by polishing and imaging
the glassy inclusions using backscatter electron mi-
croscopy. Once the inclusion geometry is in suitable
digital format, the shapes are represented in two-
dimensional finite elements (Figure 3).

We determine the unrelaxed and relaxed shear
moduli with an elastic calculation by using the ap-
propriate elastic constants for elements inside the in-
clusions. See Table 1 for specific values. To simulate
the unrelaxed case, the shear modulus of the melt
is assigned a value that is essentially zero, while its
bulk modulus is approximately that of a basaltic lig-
uid. The response thus represents times after shear
stresses in the fluid have relaxed but hydrostatic
stresses remain. When the external strain is imposed,
the pressure inside each inclusion, which is a function
of its shape and orientation, is calculated by the finite
element algorithm.

For the relaxed case we assume that all inclusions
are interconnected and that fluid flow has occurred,
equalizing the inclusion pressures. Since the differ-
ences in pressure between inclusions are identically
zero and since the average hydrostatic stress through-
out the solid due to macroscopic shear strain is zero,
we can simulate this stress state by assigning shear
and bulk elastic moduli to essentially zero inside the
inclusions, effectively filling the inclusions with vac-
uum [Mavko, 1980]. This technique is appropriate for
modeling shear stress relaxation from melt squirt but
not for bulk relaxation. It is argued by Hammond and
Humphreys [this issue], however, that bulk effects are
probably negligible compared to shear effects. Thus
we model the effects of melt squirt arising only from
imposed shear.

The finite element calculations determine the dis-
placements to all nodal positions that minimize the
global elastic strain energy. Stresses and strains are
calculated everywhere with element shape functions
and elastic constitutive relations subject to the dis-
placements applied as boundary conditions. Figure 4
is a close up view of the hydrostatic strains near a
three-grain junction resulting from a macroscopically
applied shear displacement boundary condition. For
the two-dimensional results presented here, isopara-
metric triangular quadratic elements with isotropic
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solid elasticity were used, while for the three-dimensional

calculations isoparametric wedge-shaped linear ele-
ments were used [e.g., Zienkiewicz and Taylor, 1989].
Mesh generation is accomplished through a semiau-
tomatic routine. All the finite element calculations
presented here were performed with the commercial
software package MSC PATRAN/Advanced FEA, a
product of the MacNeal Schwendler Corporation.

2.1. Numerical Accuracy

To verify that our finite element modeling provides
accurate results, two tests were performed. First, the
nodal density was progressively increased until dis-
placements and stresses did not change significantly
even around the complicated cuspate inclusion tips
and in areas of inclusion interaction. Second, a rela-
tively complex case for which an analytic solution ex-
ists was tested. Mavko [1980] solved for the amount
of elastic modulus reduction due to the presence of
a cuspate cylindrical pore of “triple junction” cross
section shape. For a single dry pore (i.e., an inclusion
with no fluid inside) with shape parameter € = 0 (the
most cuspate possible), length d, radius R, solid shear
modulus ps, Poisson’s ratio vy, bulk modulus K, and
total volume V', the bulk modulus of the composite
K, is given (after correction for a minor error from
Appendix A of Mavko [1980]) by

1 1 7R 1— 20,
E—E+4ﬂsv(l—2ys)[12+ 110, ] (].)
Using v, = 0.25, K; = 46.67 GPa, u; = 28.0 GPa,
R =1,V = 1000 (the solid is a 10 x 10 x 10 cube),
and d = 3 yields K; = 45.56 GPa.

A dry cuspate tubule of identical dimensions has
been encased in a finite element solid and compressed
with hydrostatic displacement boundary conditions
(Figure 5). Our calculation differs from that of Mavko
[1980] in that we use finite elements, rather than an
analytical method. Thus we took care to minimize the
effects of the boundary by making the volume large
enough so that stresses are close to uniform across
each face of the cube, yet small enough so that the
pore introduces sufficient weakness to the composite.
The stresses measured on the surfaces are averaged
over each face.

The effective bulk modulus calculated from finite
elements is the simple ratio of calculated hydrostatic
stress to imposed strain, Ky = 45.567 GPa, an er-
ror of <0.03% in calculation of the composite elastic
modulus, and an error of <1% in calculation of the
drop in modulus. This level of error is acceptable
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given the magnitude of differences found between the
moduli of solids with ellipse shaped and realistically
shaped inclusions, as discussed below.

2.2. Shear Modulus

Our goal is to calculate the reduction in shear
modulus owing to porosity in a three-dimensional
solid. The material contains complicated melt inclu-
sions that vary in all three dimensions, making direct
computation of the modulus with the finite element
method beyond our reach. We therefore assume that
the elasticity resulting from the true melt geometries
can be approximated by that of three-dimensional bi-
axial ellipsoids of Schmeling [1985] and then compute
perturbations to this result for the effects of inclusion
cuspateness and organization.

To determine the elastic shear modulus with finite
elements, boundary conditions are applied that drive
macroscopic simple shear strain on the finite element
mesh. In Figure 3b, for example, the top of the mesh
is translated parallel to the bottom boundary, which
is held fixed. Imposing a left-to-right wrap around
boundary condition makes the sample effectively infi-
nite and periodic in the horizontal dimension, ensur-
ing that macroscopic simple shear is enforced. The
finite element calculation provides the stress associ-
ated with the macroscopic strain, so the elastic shear
modulus of the composite material is obtained by

0ij = Aerrdij + 2ueij, (2)

where §;; is the Kronecker delta function, A is Lamé’s
first constant, and p is the shear modulus. When
i # j, 0i; is the shear stress related solely to shear
strain &;;.

The effect of melt inclusion cuspateness on elastic
shear modulus reduction has two modes as illustrated
by the tags II and III in Figures 2a and 2b. The vol-
ume in Figure 2b is weaker than the volume in Figure
2a because of the sum of the effects of cuspateness
in mode IT and mode III. Cuspateness on the front
and back of the inclusion (with respect to the direc-
tion of the applied shear, i.e., the x direction) affects
the mode II component of modulus reduction. Cus-
pateness to the sides of the inclusion (normal to the
shear direction, i.e., along the z direction) affects the
mode ITT component of modulus reduction. Because
of limitations in our ability to model complex melt
geometries in three dimensions with finite elements,
we cannot directly calculate the simultaneous effects
of mode IT and mode III cuspateness. We can express






the effect of cuspateness in the two orthogonal direc-
tions as a function of generalized mode II and mode
IIT shape parameters €;; and eyg

Mcuspate = f(ell, EIII)- (3)

This function may not be linear with respect to €1 and
€11, but because the changes in modulus are small,
we assume a local linearity and express the modulus
reduction as the sum of two corrections, one for each
mode:

Heuspate = Hellipsoid + Apr + Apiin, (4)

where Ueliipsoid is the modulus calculated for randomly
oriented ellipsoids [Schmeling, 1985].

We determine the total drop in shear modulus from
the ellipsoidal case to the cuspate inclusion case by
performing separate tests in shear mode II and mode
ITI, as represented in Figures 2c¢ and 2d. The finite
element mesh shown in Figure 3 addresses mode II
modulus reduction, since the two-dimensional mesh
is equivalent to providing zy shear to the blocks in
Figures 2c and 2d. The drop in mode II shear modu-
lus is calculated by comparing results using the mesh
in Figure 3b and a similar mesh with ellipse-shaped
inclusions of the same average aspect ratio and melt
fraction. The shear moduli for each are calculated
using (2) and the difference in moduli provides the
mode IT shear modulus correction Ayyr in (4).

The mode III modulus correction Ay is deter-
mined using a three-dimensional mesh created by pro-
jecting the mesh in Figure 3b into the plane of the fig-
ure (the “2” dimension). This results in a mesh com-
posed of wedge-shaped elements, triangular on two
faces and rectangular on three faces. The yz shear
modulus (mode IIT) is obtained by displacing the top
face in the z direction while holding the bottom face
fixed. The zz modulus is determined analogously.
In this simulation the x and y degrees of freedom
are removed, eliminating the need for a wrap around
boundary condition. Material properties are the same
as those used in the two-dimensional mesh.

Calculations based on the finite element mesh in
Figure 3 reveal that our sample exhibits significant
elastic anisotropy. It has an elastic shear modulus
that varies with orientation of the applied shear by
about ~2.6% for the unrelaxed and 3.5% for the re-
laxed cases per percent partial melt. The effects of
elastic anisotropy in the sample were removed by sub-
jecting the sample to separate simulations in pure
and simple shear. The shear modulus in a two-
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dimensional anisotropic medium has a cos(46) depen-
dence, where 6 is the orientation of the sample with
respect to the applied shear. Thus we found the di-
rectionally averaged shear modulus by averaging the
moduli determined at two orientations differing by
/4. Testing the sample in both pure and simple
shear is equivalent to rotating the sense of shear by
/4, so averaging these results provides the direction-
ally averaged shear modulus. Isotropic shear moduli
for the model in Figure 3, and for a similar model
with ellipsoidal inclusions of the same melt fraction
and aspect ratio, are used to calculate the correction
factor for inclusion cuspateness.

Natural partially molten rocks differ from ran-
domly oriented ellipsoids in an additional way. While
analytic solutions for the effect of melt on seismic ve-
locities represent the liquid phase as inclusions that
are randomly oriented and distributed [e.g., Mavko,
1980; Schmeling, 1985], real melt pockets form on the
faces of crystalline grains and adjacent to triple junc-
tion tubules, thus tending to meet end to end and in
nonrandom fashion (e.g., see Figure 1). Thus a cor-
rection factor for inclusion organization is also deter-
mined. The effect of inclusion organization on elastic
shear modulus reduction is measured by randomiz-
ing inclusion location and orientation in the model
space and comparing the modulus reduction effect
of these randomly distributed inclusions with that
caused by the naturally organized inclusions. Iter-
atively repeated randomizations and finite element
analyses were performed until it was clear that the
average for the moduli were stable with respect to
permutations of inclusion location and orientation.
Care was taken to select random samples that exhibit
smaller degrees of elastic anisotropy. Five reorgani-
zations were performed providing mean shear moduli
presented in Table 2 under “random cuspate” films.
The standard error estimates for the mean modulus
are approximately ~0.5% of their mean values. This
error is over an order of magnitude less than the dif-
ference in modulus between tubules and ellipsoids and
one sixth the difference between relaxed cuspate and
organized films. Thus we have obtained the direc-
tionally averaged shear modulus to within required
tolerance. For P and S waves the effect of inclu-
sion cuspateness is between 1.1 and 5 times greater
than the effect of inclusion organization, depending
on whether the melt is relaxed or unrelaxed, respec-
tively.

In Table 2 the effect of the various corrections are
shown in terms of the percent seismic velocity reduc-



tion per percent partial melt dlnV/dF. Our cor-
rection factors are applied to the velocity reductions
determined by the analysis of three-dimensional ran-
domly oriented ellipsoidal pores of Schmeling [1985].
These derivatives are functions of melt fraction, as
described in section 3. They are estimated by

8 In Vp - In sz —In Vp1

OF F—F 5)
6 In VS ~ In V52 —In Vgl (6)
OF F, — Fy ’
OlnVp  O0lnVp/OF )
0lnVs 0InVs/OF’

where Vp; is the P wave velocity and Vg; is the S
wave velocity at melt fraction F;. We assume that the
effect of the presence of melt on the density of the rock
with respect to seismic velocity is small enough to be
ignored and that velocity reduction is linear with melt
fraction. The melt fraction F' of the sample shown in
Figure 3 is 2.0%.

2.3. Bulk Modulus

Bulk modulus, compared to shear, is relatively in-
sensitive to inclusion orientation. Thus a single exper-
iment was performed in which inclusions of realistic
geometries were compared to a sample with the same
porosity having ellipse-shaped inclusions of the same
average aspect ratio. To excite the bulk modulus, the
boundary conditions on the finite element sample are
changed so that all four boundaries of the solid are
displaced toward the center of the sample. We find
that the bulk modulus is relatively insensitive to the
differences in inclusions shape (i.e., cuspate versus el-
lipsoidal) analyzed here. Furthermore, the difference
between the relaxed and the unrelaxed bulk modulus
is negligible since variations in hydrostatic pressure
between inclusions are relatively small as a result of
macroscopically applied bulk compression, and hence
little fluid flow occurs. Thus, for the remainder of
this analysis, perturbations in seismic velocity due to
inclusion shape are assumed to take place via the the
shear modulus alone, leaving the bulk modulus con-
stant. For the calculations we use K = 45.72 GPa,
the value predicted by Schmeling [1985] for randomly
oriented ellipsoids with aspect ratio a = 0.05 and
melt fraction F' = .02.

3. Discussion

Our goal has been to better understand the effect
of partial melt on seismic wave propagation in the
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upper mantle. Among the conditions that influence
seismic wave propagation, the effects of partial melt
are relatively poorly understood, primarily because
the specifics of the melt geometry are important in
addition to the quantity of melt. We have thus con-
centrated our efforts on obtaining a refined estimate
of elastic modulus reduction of upper mantle rocks
containing small amounts of melt in realistic geome-
tries, as inferred from laboratory experiments of up-
per mantle partial melt.

With utility for seismologists in mind, we devise
a simple scheme for estimating partial melt con-
tent and perturbations in temperature based on re-
solved seismic wave velocity reduction. The pre-
sumption is that the sensitivity of seismic velocity
to the presence of melt is provided by the deriva-
tives 0lnVp /OF, 8lnVs/OF (for partial melt), and
OlnVp /0T, 8lnVs /0T (for temperature variations).
These derivatives are quantities that have been, in
part, determined in section 2 (for partial melt, see
Table 2) and by laboratory studies of the elastic and
anelastic properties of single crystal olivine and peri-
dotitic rocks [e.g., Karato, 1993; Isaak, 1992; Jackson
et al., 1992].

3.1. Effect of Melt Fraction

Laboratory experiments suggest that as melting
proceeds, the first liquid is contained predominantly
in long, narrow triple junction tubules. As melt con-
tent increases, a greater proportion of the melt resides
in film-like pores. This is supported by laboratory
studies of the effect of temperature on seismic veloc-
ity, which show that as the solidus is crossed, a grad-
ual transition from subsolidus to supersolidus rate of
velocity change occurs [Sato et al., 1988]. This ex-
periment also showed that as melt fraction increased,
seismic velocity reduction per percent partial melt
increased until becoming approximately constant (in
their study at around 5% melt fraction). Addition-
ally, high-pressure experiments designed to explore
the geometries of partial melts produce, at melt frac-
tions <2%, nearly all melt contained in triple junction
tubules [Waff and Bulau, 1979]. Faul et al. [1994]
specifically address the distinction between oblate-
versus prolate-shaped inclusions and find that dom-
inance of the disk-shaped inclusions extends to melt
fractions as low as 0.75%. Above this threshold ~80%
of the melt is sequestered in disk-shaped inclusions. A
consistent explanation for these observations is that
as the solidus is crossed, the first melt appears as
triple junction tubules, then as the temperature in-



creases, further films appear and grow to dominate
[Waff and Faul, 1992]. We define these two domains
by specifying the temperature Tg),, above which the
film geometry dominates. We select the Thi, that
corresponds to F' = 1%, a value most consistent
with that of Faul et al. [1994], since this study ad-
dresses this question most directly. In section 3.2 we
take this behavioral transition into account by con-
sidering two paradigms for the style of evolution in
partial melt containment as melt fraction increases.
Partial derivatives of seismic velocity with respect to
melt fraction corresponding to each paradigm are pre-
sented in Table 2. The first paradigm assumes that
partial melt is predominantly contained in cuspate
penny shaped inclusions (Figure 3) whose aspect ra-
tios are constant with melt fraction. The ratio of melt
contained in tubules versus film-like pores remains
fixed for all melt fractions. The second paradigm al-
lows for the first melt to appear as triple junction
tubules, transitioning into a film dominated regime
with increasing melt fraction. In this case separate
representations are used for the very low melt frac-
tion regime (tubules) and for the higher melt fraction
(file-like shapes) dominated regime. We use the par-
tial derivatives calculated by Mavko [1980] for triple
junction tubule shape pores below Tqi,. Above Thim
we use the derivatives for cuspate organized inclu-
sions satisfying our calculated velocity reduction at
2% melt fraction. Above Tg),, the velocity reduction
derivatives are greater than for the case where the
melt is contained in films for all melt fractions since
Vp1 and Vg; are due to the effect of tubules at Tgim.

3.2. Determining Seismic Velocity Reduction
From Temperature and Melt Fraction

Determining temperature perturbation and partial
melt content from Vp and Vg reductions is an in-
verse process that relies on a sound forward calcula-
tion using known effects of partial melt and temper-
ature. Anelastic (attenuating and frequency depen-
dent) as well as anharmonic (frequency-independent
and nonattenuating) effects must be considered above
and below the solidus. When observations of @) are
available, estimates for the velocity reduction due to
solid state anelasticity can be obtained using relation-
ship (6) of Karato [1993]. In this case a velocity per-
turbation from the background can be translated di-
rectly to values for amount of temperature change and
quantity of partial melt. In general, we can semilin-
earize the temperature and melt fraction dependence
of Vp as

AVp dlnVp  OlnVp
S AT
Ve [ oT an ' OT ] , (8a)
when T < T;
AVp dlnVp  OlnVp
S AT
VP |: oT ah + oT ae:| +
Oln Vp
F. 8b
( oF tube) ’ ( )
when T; < T < Tqim; and
AVP Oln Vp Oln Vp
= = AT
Vp [ OT an + oT ae:| +
Oln Vp
Faim +
( OF tube) il
OlnVp
( oF ﬁlm) (F - Fﬁlm) ) (SC)

when Thim < T'. In each case AT =T —Tp and T', Ty,
and T are temperature, temperature of nonanoma-
lous mantle, and solidus temperature (°C) respec-
tively. F' is melt fraction which is a function of tem-
perature. Fgy, is the melt fraction above which films
become the dominant form of melt containment, oc-
curring at temperature Tgy,. The ae and ah sub-
scripts denote the anelastic and anharmonic deriva-
tives, respectively. This relationship has an exact
analog for S waves, which is not written here. The
first paradigm for melt containment can be repre-
sented by letting Thaim — Ts, which effectively elimi-
nates (8b).

Equation (8) is only semilinearized because of the
dependence of the partial derivatives on temperature.
The values of the derivatives in the first two terms are
given by Karato [1993], while the derivatives of the
two right-hand terms can be found in the relaxed col-
umn of Table 2 for organized cuspate films. Evidence
that the relaxed modulus is appropriate is provided
by Hammond and Humphreys [this issue]. We can use
the temperature dependence of F' to eliminate F' and
write (8) solely as a function of temperature. We use

F = —17.16+40.025(T) -9 x 10°(T?) (9)

found by Baker and Stolper [1994] for the melting of
peridotite. In this relation, 1240 < T < 1340°C at 10
kbar, appropriate for dry mantle. Addition of water
to the system will depress T considerably.

Figure 6 shows the amount of cumulative seismic
velocity reduction for P and S waves as a function

Figure 6
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of temperature. The crosses indicate velocity reduc-
tion at the solidus for reference = 50, ) = 100,
and Q = oo, assuming () is held constant. The
lines indicate velocity reduction as a function of tem-
perature and melt fraction with @ that varies with
temperature, as discussed below. The slope of the
lines below T are the sums of the temperature and
(-dependent derivatives for the effects of anelastic-
ity and anharmonicity for solid state mantle. Us-
ing the relations of Karato [1993], we have activa-
tion enthalpy H* = 500 kJ/mol and the frequency
dependence of ) parameter F(a) = 1 to determine
the derivatives for these ranges of T and (). Anhar-
monic derivatives are dlnVpo/dT = —0.62 x 10_4,
dInVgo/dT = —0.76 x 10~* and are constant over
the temperature ranges studied here [Isaak, 1992)].
The resulting cumulative velocity reduction for each
temperature comes from integrating the derivatives
numerically:

AV T 1 qv
2y _ A o} 1
v /T VT ar® (10)

Above T, dIn V/dT is the sum of the effect of tem-
perature on the solid matrix and the effects of partial
melt derived earlier. We assume that at small melt
fractions, melt-induced effects are additive to solid
state effects and that the presence of melt is not con-
centrating strain at grain boundaries thereby reduc-
ing the contribution of solid state effects. Thus at
each temperature above the solidus and below Tgim,
we add the additional velocity perturbation

dinV
(g5 YveF (1)

while above Tgim we add

dlnV dinV
(d—F)tubeFtube + (d—F)ﬁlm(F — Fiupe)  (12)

at the appropriate temperature determined by (9).
These relationships can be calculated for every depth
interval of interest, providing velocity perturbations
from melt content and temperature.

The effect of temperature on solid state Qg in up-
per mantle rocks has been studied in the laboratory
by Jackson et al. [1992], who showed that Qs has a
roughly exponential dependence on temperature be-
tween 600 and 1000°C. Their results can be approxi-
mately summarized by

Qs(T) = 1.6 x 103e=3-466x10°T (13)
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The effect of the temperature dependence of () on the
total percent seismic velocity reduction is shown with
the heavy solid lines in Figure 6. While actual sepa-
rate measurements for Qs and ) p would be prefer-
able, this is not always practical. Since bulk attenua-
tion in the mantle is negligible, Q p can be estimated
from Qg by [Anderson, 1989]

3, Vb,

= (= . 14

Qr = 4( Vs) Qs (14)

The solid lines in Figure 6 show examples of the effect
that @) dependence has on velocity reduction.

The ratio between P and S seismic wave velocity
is shown in Figure 6¢ as a function of temperature.
The values are calculated as the simple ratio between
Vp and Vg velocity assuming that at the nonanoma-
lous mantle temperature Vp /Vg = v/3. Melt has the
dominant effect on Vp/Vs. Above T, perturbations
in Vp/Vs increase with increasing melt fraction, e.g.,
Vp/Vs = 2 at F = 2%.

3.3. Determining Temperature and Melt
Fraction from Seismic Velocity Reduction

Seismology offers a direct means for inferring the
presence of partial melt in the upper mantle. Invert-
ing seismic velocity to determine the temperature and
melt content has two sources of uncertainty: (1) im-
perfect resolution leading to underestimates in the
amplitude of seismic velocity anomalies and (2) the
less than ideal understanding of the relationships be-
tween velocity reduction and the physical parameters
causing velocity reduction. With uncertainty in the
relationship between melt fraction and velocity reduc-
tion aside, other issues relating velocity and physical
state still remain a concern. For example, the rela-
tionship between temperature and melt fraction, the
temperature dependence of (), and values for H* are
not known with great certainty. Some of these are
pressure-dependent and thus need to be tailored to
the specific depth intervals of interest.

3.4. Anisotropic Conditions

Experimental studies of partially molten mantle
materials indicate that penny shaped melt pores be-
come preferentially aligned in the presence of nonhy-
drostatic stress conditions [Jin et al., 1994; Kohlstedt
and Zimmerman, 1996; Bai et al., 1997; Daines and
Kobhlstedt, 1997; Karato et al., 1998; Zimmerman et
al., 1999]. Preferred orientation of melt pockets in the
mantle will cause anisotropy of seismic wave velocity



and attenuation, and anisotropic melt distributions
will tend to cause further elastic shear modulus re-
duction as additional end-to-end alignments of melt
inclusions are created. An estimation of the effects
of this type of organization requires a continuation
of our study and is not the subject of this paper.
Our conclusions on elastic modulus reduction may
be viewed as lower-bound estimates of the effects of
melt inclusions when significant inclusion anisotropy
is present.

The conclusion that use of the relaxed modulus
is appropriate for upper mantle studies in the seis-
mic band is still valid in the presence of preferential
melt inclusion alignment. This is because preferential
alignment does not result in an increase of attenua-
tion in the seismic band [Hammond and Humphreys,
this issue].

3.5. Scale of Inhomogeneity

Most experiments that explore the geometries of
interstitial melt pockets are performed on samples of
synthetic peridotite-like materials that are created in
the laboratory. Chemical and grain size heterogeneity
are carefully controlled in order to construct simple
but representative models of natural rock.

Natural samples of peridotite possess inhomogeneities

on greater scales than the ~1mm capsule size of lab-
oratory analyses. A quick look at the top quarter
of Figure 1 shows that even within laboratory sam-
ples, melt organizes itself into structures that create
larger zones of weakness within the material. We see
from section 2.2 and Table 2 that the effect of orga-
nizing inclusions into nonrandom arrangements that
elastically interact with one another is to further re-
duce the shear modulus. Thus any larger-scale or-
ganizations or deviations from idealizations of melt
geometries will always serve to reduce seismic veloci-
ties further. Although this effect is most likely small
in the upper mantle, it is added to the fact that we
apply a two-dimensional cuspateness correction fac-
tor to three-dimensional ellipsoids, which also tends
to underestimate the velocity reduction. The values
in Table 2 thus represent minimums for the deriva-
tives of velocity with respect to melt fraction.

4. Conclusions

We have estimated the effect of upper mantle par-
tial melt on seismic P and S wave velocities. Qur con-
tribution to this effort has been to estimate two cor-
rection factors to the commonly used randomly ori-
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ented ellipsoidal melt inclusion model. These include
a correction for melt inclusion cuspateness and a cor-
rection accounting for the nonrandom organization of
inclusions. Both effects increase the effectiveness that
partial melt has in reducing seismic velocities.

In partially molten upper mantle containing over
1% melt, seismic wave velocity reduction per per-
cent melt in realistically shaped melt inclusions is at
least 3.6% and 7.9% for P waves and S, waves re-
spectively. These derivatives may be smaller at melt
fractions <1%, implying larger derivatives above 1%.
The difference in the inferred melt fraction for these
two paradigms for melt containment is the error ow-
ing to uncertainty in the geometry of melt inclusions
for melt fractions other than our sample (Figure 3).

The ratio of P and S seismic wave velocities is sen-
sitive to the effects of partial melt and relatively insen-
sitive to the effect of subsolidus temperature changes
including anelastic modulus reduction. For example,
at 3% melt fraction a 1°C temperature change causes
at least 3.5% change in Vp /Vg, whereas when @, = 40
at T, subsolidus temperature changes of 300°C are
required to cause an ~3% change in Vp/Vs.
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Figure 1. Backscattered electron microscopic image of the melt phase from laboratory experiment by Faul et al.
[1994]. Black represents quenched liquid melt phase; white is crystalline solid.

Figure 2. Idealized single melt inclusions illustrating the inference of three-dimensional behavior from two-
dimensional melt inclusion shape data. (a) Three-dimensional oblate ellipsoid; arrows show sense of shear in the
zy plane. (b) Three-dimensional cuspate inclusion with same aspect ratio. In Figures 2a and 2b the edges excited
by mode IT and mode III cracktip stress are shown by IT and III, respectively. (c) Two-dimensional ellipse cross-
sectioned cylinder. (d) Cuspate cross-sectioned cylinder. In Figures 2¢ and 2d shear sense arrows show mode II
excited by shear in zy plane and mode IIT excited by shear in yz and zz planes.

Figure 3. (a) Partial melt geometries used to calculate composite material elastic properties. (b) Finite element
mesh built around same geometries with elastic finite elements.

Figure 4. An enlarged example result of the finite element calculation showing the hydrostatic component of
strain in the unrelaxed state. Macroscopic displacement moves top of mesh to the right, while bottom remains
fixed. White outline delineates location of melt. Dark shades show compressive strains, light shades show expansive
strains. The existence of stress gradients in the melt indicates that the melt is unrelaxed. Sign of the strain is a
function of the inclusion orientation.

Figure 5. Two views of the three-dimensional finite element mesh used to benchmark the solution to Mavko’s
[1980] solution for the dry cuspate tubule. Dimensions of the cube are 10 x 10 x 10 units, pore length is d = 3,
pore radius is R = 1, K3 = 46.7 GPa, pu; = 28.0 GPa. Inset shows detail of mesh inside triple junction pore.

Figure 6. (a) Vp and (b) Vg seismic velocity reduction and (¢) Vp/Vs as a function of temperature and partial
melt content. Melt percent as a function of temperature is appropriate for water-free mantle at 30 km depth. Solid
lines show results for () that vary exponentially with temperature per Jackson et al. [1992]. At the solidus, Tj
values of Qp = 90 and Qs = 40 are used. Thin vertical lines indicate melt fraction F=0%, 1%, and 2%. Circles
at F=0% show where lines would cross if variable () have values Qp = 45 and Qs = 20 at T;. Crosses show where
lines would cross the solidus given the assumption that () is constant for Q = oo, @ = 100, and @ = 50, as labeled
in Figure 6a. The background temperature of (8) is Ty = 1000°C which is 240°C below T,. All three crosses
in Figure6c are coincident. Above the solidus the solid lines represent velocity reduction for melt containment in
tubules only below 1% melt. The shaded lines represent velocity reduction for melt contained in film geometries
as in Figure 3 for all melt fractions. See text for discussion and values of other constants.



Table 1. Elastic Constants Used in Calculation of Ma-
terial Properties.

Solid Melt
Unrelaxed Relaxed
K 124 40 0
I 64 0 0

In GPa.
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Table 2. Effect of Realistic Melt Geometries on Elastic Moduli and Seismic Velocity

14

K I —dInVp/dF —dInVg/dF dInVs/dInVp

Unrel. Rel. Unrel. Rel. Unrel. Rel. Unrel. Rel.

Tubules 46.57 25.59 25.06 1.0 1.2 2.2 2.7 2.2 2.3
Ellipsoids 45.72 24.64 23.39 1.7 2.1 3.1 4.3 1.8 2.1

Paradigm 1: Films at All Melt Fractions
Random cuspate 45.72 22.38 21.29 2.7 2.9 5.3 6.4 2.0 2.2
Organized cuspate 45.72 21.98 19.85 2.9 3.6 5.7 7.9 2.0 2.2
Paradigm 2: Tubules Below F=1%, Films Above F=1%

Random Cuspate 45.72 22.38 21.29 4.5 4.8 9.0 11.0 2.0 2.3
Organized Cuspate 45.72 21.98 19.85 5.0 6.3 9.9 14.5 2.0 2.3

Elastic moduli are in GPa. Velocity reduction derivatives are in percent. Ellipsoids and films have aspect ratio o = 0.05.
Seismic velocity reduction due to tubules from Mavko [1980]. Velocity reduction derivatives due to ellipsoids from Schmeling
[1985]. Bulk K and shear p elastic moduli are for F=2%. See text for definitions of relaxed (Rel.) and unrelaxed (Unrel.)

elastic moduli.
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